

Environmental Product Declaration

In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019 for:

LIP Floor Screeds

from LIP Bygningsartikler A/S

Programme: The International EPD® System, www.environdec.com

Programme operator: EPD International AB

EPD registration number: S-P-04247 available from EPD International

Publication date:2021-11-02 (version 1)Revision date:19-09-2022 (version 2)

Valid until: 28-10-2026 (version 1, version 2)

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

General information

Owner of the declaration and manufacturer:

LIP Bygningsartikler A/S · Industrivej 16 · DK-5580 Nørre Aaby · Phone: +45 6442 1330 · Fax: +45 6442 3408

Declaration issued: 2021-11-02 (version 1), xx-10-2022 (version 2)

EPD Prepared by: Bureau Veritas HSE, Denmark

Standards: ISO 14025 and EN 15804+A2:2019. EPDs' of other construction products may not be comparable if they do not comply with this standard.

Scope: This LCA study is intended to be used in a cradle to grave with module D EPD covering the following floor screeds in table 1, all produced by LIP Bygningsartikler A/S at the same production site. The EPD will be accessible on http://www.lip.dk/ together with safety data sheets and product information, providing information for business-to-business communication, intended for R&D development. The Geographical scope is Europe.

About LIP Bygningsartikler A/S

LIP Bygningsartikler A/S is a Danish Company, which since its founding in 1967 has produced high quality products at competitive prices.

The product range from the beginning was tile adhesive and sealants, which since then has been expanded with products within flooring putty, waterproofing, silicone, epoxy, filler compounds, etc.

All our products are continuously under internal as well as external quality control, so that we can always live up to our slogan:

LIP - when building on quality!

Product information

Products represented

LIP 210 Floor Screed, LIP 215 Floor Screed, LIP 220 Floor Screed, LIP 222 Floor Screed, LIP 226 Floor Screed, LIP 228 Floor Screed, LIP 230 Floor Screed, LIP 245 Floor Screed, LIP 250 Floor Screed, LIP 255 Floor Screed, LIP 227 Floor Screed.

Figure 1: Pictures of the eleven LIP products covered in this project report.

Product description

These products are manufactured by LIP Bygningsartikler A/S in the production plants located in Nørre Aaby, Denmark. These products are used for fixing and laying wall and floor tiles, marble, facing bricks, glass wool batts, Rockwool batts, polystyrene veneers, etc.

The manufacturing process starts from raw materials purchased from suppliers and stored in the plant. Bulk raw materials are stored in specific silos and added mostly automatically in the production mixer, according to the formula of the product. Other raw materials, supplied in bags or big bags, are stored in the warehouse and added automatically or manually in the mixer. The production is a discontinuous process, in which all the components are mechanically mixed in batches.

The semi-finished product is then packaged in bags, put on wooden pallets, covered by stretched hoods and stored in the Finished Products' warehouse. The quality of final products is controlled before the sale.

The product is supplied from production in dry form, premixed in respect of all contents but water. Water is added at the building site in the construction/ installation stage, in a defined amount and technique, to produce a deformable cementitious adhesive of high performance.

Table 1: Product information for the eleven products covered by this EPD.

Produ	ıct name	Article no.	Description
Danish	English	Article no.	Description
LIP 210 Selvnivellerende	LIP 210 Floor Screed	240009	20 kg bags
Gulvspartelmasse			Grey cement based
			0.23L water per kg
LIP 215 Selvnivellerende	LIP 215 Floor Screed	240016	20 kg bags
Gulvspartelmasse			Grey cement based
			0.25L water per kg
LIP 220 Selvnivellerende	LIP 220 Floor Screed	240023	20 kg bags
Gulvspartelmasse			Grey cement based
			0.2L water per kg
LIP 222 Selvnivellerende	LIP 222 Floor Screed	240061	20 kg bags
Gulvspartelmasse			Grey cement based
			0.2L water per kg
LIP 226 Selvnivellerende	LIP 226 Floor Screed	240030	20 kg bags
Fiberspartel			Grey cement based
			0.2L water per kg
LIP 228 Selvnivellerende	LIP 228 Floor Screed	240047	20 kg bags
Gulvspartelmasse			Grey cement based
			0.2L water per kg
LIP 230/Bostik 3050 Fine	LIP 230 Floor Screed/Bostik	4411880/441881	15 kg bags
Plus	3050 Fine Plus		Grey cement based
			0.26-0.32L water per kg
LIP 245 Hurtighærdende	LIP 245 Floor Screed	242027	15 kg bags
Opretningsmasse			Grey cement based
			0.22L water per kg
LIP 250 Projektspartel	LIP 250 Floor Screed	241006	20 kg bags
			Grey cement based
			0.19-0.21L water per kg
LIP 255 Selvnivellerende	LIP 255 Floor Screed	241013	20 kg bags
Gulvspartelmasse			Grey cement based
			0.18-0.2L water per kg
LIP 227 Selvnivellerende	LIP 227 Floor Screed	102611	20 kg bags
Gulvspartelmasse			Grey cement based
			0.2L water per kg

Declared Unit

Declared unit is 1 kg of finished product according to the PCR 2019-14 PCR Construction products v1.11.

The product consumption, of course, depends on the size of the tile, unevenness, grout size and the size of the toothpick.

Reference service life

According to LIP Bygningsartikler A/S experience, the Reference Service Life (RSL) of premade floor screeds has been known to be 50 years or longer.

Technical data

The products are designed, produced and CE marked according to EN 13813:2003 (Screed material and floor screeds – screed material – properties and requirements).

They are classified as seen in table 2 according to EN 13813: :2003 Screed material and floor screeds – screed material – properties and requirements.

Table 2: Performance information for the eleven floor screed products according to EN 13813:2003.

	LIP 210 Floor Screed	LIP 215 Floor Scree <mark>d</mark>	LIP 220 Floor Screed	LIP 222 Floor Scree <mark>d</mark>	LIP 226 Fiber Screed	LIP 228 Outdoor Floor Screed	LIP 230 Floor Screed/ Bostik 3050	LIP 245 Floor Screed	LIP 250 Floor Screed	LIP 255 Floor Screed	LIP 227 Floor Screed
Standard	EN 13813	EN 13813	EN 13813	EN 13813	EN 13813	EN 13813	EN 13813	EN 13813	EN 13813	EN 13813	EN 13813
Classification Compressive strength Flexural strength	CT-C30- F8	CT-C35- F9	CT-C25- F6	CT-C30- F7	CT-C25- F7	CT-C40- F10	CT- C30-F8 / F7	CT-C25- F6	CT-C30- F6	CT-C25- F6	CT-C25- F6
Compressive strength	30-35 N/mm2	35-40 N/mm2	30-35 N/mm2	30-35 N/mm2	30-35 N/mm2	40-50 N/mm2	Min. 25-30 N/mm2	35-45 N/mm2	30-35 N/mm2	N/A	30-35 N/mm2
Adhesion strength on concrete	> 2 N/mm2	> 2 N/mm2	≥ 1.5 N/mm2	≥ 2 N/mm2	≥ 1.5 N/mm2	> 2 N/mm2	> 1 MPa	N/A	> 2 N/mm2	N/A	> 2 N/mm2
Abrasion resistance: DS/EN 13892-5	RWA20	RWA20	RWA100	RWA20	RWA100	RWA10	N/A	N/A	RWA100	RWA100	RWA20

Air emission

All the eleven floor screeds covered in this EPD has low dust technology and very low emission of volatile organic compounds and documented with GEV-EMICODE EC $\mathbf{1}^{PLUS}$. Documentation attached for GEV-EMICODE.

Content declaration

Content declaration including packaging covering the eleven LIP Floor screeds in this EPD.

Table 3: Content declaration, which covers the eleven floor screed products. Packing material information is per kg product. 1 declared unit is 1kg of product. Data given by LIP Bygningsartikler A/S

	LIP Floor Screeds												
Product com	ponents	Weight %	Post-consumer material, weight-%	Renewable material, weight-%									
Silica sand		10 - 60	0%	0%									
Cement		10 - 40	0%	0%									
Calcium car	bonate	10 - 40	0%	0%									
Additives		10 - 25	0%	0%									
Packaging m	aterials	Weight, kg	Weight-% (versus the prod	luct)									
Bags	Paper	12 g/kg product	1.2 %										
	PE-film	0.5 g/kg product	0.05 %										

Transport packaging	PE-film	0.6 g/kg product	0.06 %
Total:			<1.5%

During the life cycle of the product no hazardous substance listed in the "Candidate List of Substances of Very High Concern (SVHC) for authorization" has been used in a percentage higher than 0.1% of the weight of the product.

LCA information

Product category rules (PCR)

PCR 2019:14 Construction products (EN 15804:A2) Version 1.11.

Time representativeness

Data from factory (primary data) is from 2021.

Database(s) and LCA software used

LCA Software: Simapro 9.4

Database: Ecoinvent 3.8 (2021) – allocation, cut-off by classification – unit. Cut off criteria is set to 1%, although 100% of product recipe is taken into account.

The impact models used are the ones included in the Simapro method named EN 15804 +A2 Method V1.00 / EF 3.0 normalization and weighting set.

Description of system boundaries

This study covers the cradle to grave with module D of PCR 2019-14 PCR Construction products v1.11. Table 4: Life cycle stages covered by this LCA study.

		Produ	ct stage		lation esses			U	se stag	ge			E	nd of I	ife stag	ge	
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling-potential
			L-A3														
Module	comn	uction of noditie raw erials	Product manufacture	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
Modules			X	Х	Х	NR	NR	NR	NR	NR	NR	NR	Х	Х	Х	Х	Х
declared Geography	Europ	ne .	Denmark							Euro	oe						
Process type	Upstr		Processes the manufacture has influence over	Downstream													
Data type	Gene	ric	Specific							Speci	fic						
Variation – products		-	oduct, resulting environmental							-							

	impact per declared unit is	
	LIP 230 Floor Screed / Bostik	
	3050 Fine Plus.	
	34% variation in GWP-GHG	
	between LIP 230 Floor Screed	
	/ Bostik 3050 Fine Plus and	
	LIP 210 Floor Screed.	
	12% variation in GWP-GHG	
	between LIP 230 Floor Screed	
	/ Bostik 3050 Fine Plus and	
	LIP 215 Floor Screed.	
	44% variation in GWP-GHG	
	between LIP 230 Floor Screed	
	/ Bostik 3050 Fine Plus and	
	LIP 220 Floor Screed.	
	50% variation in GWP-GHG	
	between LIP 230 Floor Screed	
	/ Bostik 3050 Fine Plus and	
	LIP 222 Floor Screed.	
	44% variation in GWP-GHG	
	between LIP 230 Floor Screed	
	/ Bostik 3050 Fine Plus and	
	LIP 226 Floor Screed.	
	63% variation in GWP-GHG	
	between LIP 230 Floor Screed	
	/ Bostik 3050 Fine Plus and	
	LIP 228 Floor Screed.	
	44% variation in GWP-GHG	
	between LIP 230 Floor Screed	
	/ Bostik 3050 Fine Plus and	
	LIP 245 Floor Screed.	
	58% variation in GWP-GHG	
	between LIP 230 Floor Screed	
	/ Bostik 3050 Fine Plus and	
	LIP 250 Floor Screed.	
	58% variation in GWP-GHG	
	between LIP 230 Floor Screed	
	/ Bostik 3050 Fine Plus and	
	LIP 255 Floor Screed.	
Variation –	Manufactured in one site	-
sites		

Product stage (A1-A3):

- A1-A2: extraction, supply and transport of raw materials and packaging to LIP Bygningsartikler A/S. Raw materials are purchased from European suppliers.
- A3: manufacturing process of product and its packaging and waste management from the same process. All the electricity comes from wind energy produced at Lindø Port with >3MW onshore wind turbines. Approximately 0.88MJ is used for the production of 1 kg product. A3 covers dosage and mixing of selected and measured raw materials and additives to ensure that the product meets desired properties and packaging material consumption. Packaging product materials consist of the bag material, wooden pallet and LDPE used as wrapping material. The wooden pallet is part of a return system, and therefore not a part of this study.

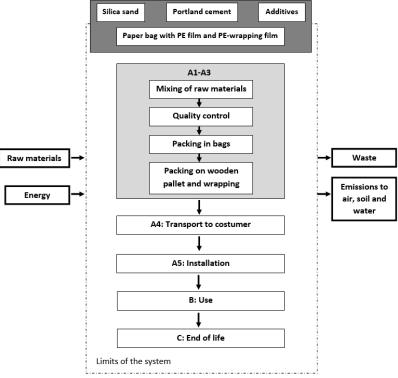


Figure 2: Limits of the system in this study.

Construction process stage (A4-A5):

- A4: distribution to typical Customer by transport of packaged product from production gate to end
 user (building site). The customers of LIP Bygningsartikler A/S are primarily from Denmark. About 92
 percent of the products produced by LIP at the production site in Nørre Aaby in Denmark, are sold in
 Denmark, 4 percent in Sweden, 2 percent in Norway and 1 percent in both Germany and the
 Netherlands. The distance has in the present LCA study been estimated to be 500km via road
 transport by a Euro 6 lorry of 32 metric ton.
- A5: installation of product into building, including required water and its blending energy. For installation, water consumption can be found in table 1. Mixing electricity consumption is assumed to be 0.216 MJ/kg. This is equivalent to the use of a 1200-Watt handheld mixer for 3 minutes. We assume that there are no losses during installation. We assume that there are 5% losses during installation. 5% loss has been advised to LIPs customers and LIP offers calculator with losses on LIPs website as a guide when buying products. Conservative approach according to LIP, technician has experience and uses the same bucket of floor screed product to reduce residue. Estimate of 2-4 % is expressed by 5% loss instead, as a conservative approach. No industry standard exists and PCR does not provide further guidance for any losses or spillage. The product can be used in 12 months or 18 months. The electricity mix is modelled with European mix and it is considered as an adequate choice, but since more than 90% of the market is in Denmark, Danish residual mix would be a better choice to consider in this study's validity period of 5 years.

Use stage (B1-B7):

 B1 to B7 are not relevant (NR) as they are not applicable: the product does not need maintenance or replacement during its RSL. If professionally used and properly installed and according to LIP Bygningsartikler A/S experience, the Reference Service Life (RSL) of floor screeds has been known to be 50 years or longer.

End of life stage (C1-C4):

- C1: deconstruction and demolition of the product into the building. Floor screeds for surface use are
 typically not considered as part of the structure of the building. However, during the building
 destruction, the quantity of extra energy required to break this application can be neglected
 compared to the energy required to demolish the structure of the building and are therefore not
 included in this LCA study.
- C2: transport of waste product from demolition to recycling/disposal facility that is waste collection. The distance is assumed to be 50 km via road transport by a Euro 6 lorry of 32 metric ton.
- C3: The product is expected to be disposed as landfill after end of life.
- C4: Waste disposal including physical pre-treatment.

D Reuse-Recovery-Recycling potential

Module D calculates the potential environmental benefits of the recycling or reuse of materials. This product has not considerable benefits due to recycling or/and reuse.

Environmental performance

All the environmental impacts have been calculated in SimaPro and with the EN 15804 + A2 Method, which takes all the methods defined by the European Standard EN 15804 + A2 into account.

All the LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks.

LIP 210 Floor Screed

The estimated impact results are only relative statements, which do not indicate the endpoints of the impact categories, exceeding thresholds values, safety margins or risks.

Core environmental impact indicators

Table 5: Core environmental impact results for the product LIP 210 Floor Screed.

	Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D		
GWP- total	kg CO₂ eq.	3,22E-01	4,30E-02	3,85E-01	0	0	4,35E-03	0	5,28E-03	0		
GWP-fossil	kg CO₂ eq.	3,01E-01	5,49E-02	3,19E-01	0	0	4,35E-03	0	5,27E-03	0		
GWP-biogenic	kg CO₂ eq.	-9,71E-03	-1,20E-02	3,31E-02	0	0	4,62E-06	0	5,72E-06	0		
GWP- luluc	kg CO₂ eq.	5,95E-04	6,68E-05	6,05E-04	0	0	1,63E-06	0	4,97E-06	0		
ODP	kg CFC 11 eq.	2,79E-08	1,19E-08	2,89E-08	0	0	1,08E-09	0	2,13E-09	0		
AP	mol H⁺ eq.	2,04E-03	2,20E-04	2,13E-03	0	0	1,39E-05	0	4,95E-05	0		
EP-freshwater	kg PO ₄ 3- eq.	1,31E-04	2,16E-05	1,32E-04	0	0	2,83E-07	0	4,82E-07	0		
EP- marine	kg N eq.	3,12E-04	5,76E-05	3,24E-04	0	0	3,10E-06	0	1,72E-05	0		
EP-terrestrial	mol N eq.	3,75E-03	5,97E-04	3,80E-03	0	0	3,39E-05	0	1,88E-04	0		
POCP	kg NMVOC eq.	9,39E-04	2,11E-04	9,46E-04	0	0	1,33E-05	0	5,48E-05	0		
ADP-	kg Sb eq.	6,01E-06	1,66E-07	6,20E-06	0	0	1,04E-08	0	1,20E-08	0		
minerals&metals**		0,01E-00	1,002-07	6,20E-06	U	U	1,046-06	U	1,202-08			
ADP-fossil**	MJ	3,56E+00	9,21E-01	3,83E+00	0	0	7,08E-02	0	1,47E-01	0		
WDP **	m³	1,67E-01	1,05E-02	1,80E-01	0	0	2,43E-04	0	6,62E-03	0		
Acronyms	GWP-fossil = Glob	al Warming F	Potential fossi	l fuels; GWP-bi	ogen	ic = Gl	obal Warmin	g Potei	ntial biogenic	; GWP-luluc =		
	Global Warming F	otential land	use and land	use change; O	DP =	Deplet	ion potential	of the	stratospheric	c ozone layer;		
	AP = Acidification	potential, Ac	cumulated Ex	ceedance; EP-f	resh	water :	= Eutrophicat	ion po	tential, fraction	on of nutrients		
	reaching freshwat	er end comp	artment; EP-r	marine = Eutrop	ohica ⁻	tion po	otential, fract	ion of ı	nutrients read	ching marine		
	end compartmen	•	•	•	-					•		
	tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic											
	depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water											
	consumption											

Additional environmental impact indicators

Table 6: Additional environmental impact results for the product LIP 210 Floor Screed.

		R	esults per	declared ι	ınit							
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D		
GWP-GHG	kg CO₂ eq.	2,96E-01	4,32E+01	3,26E-01	0	0	4,32E+00	0	5,18E-03	0		
PM	disease inc.	1,64E-08	5,99E-09	1,67E-08	0	0	5,05E-10	0	9,97E-10	0		
IRP*	kBq U235 eq	1,84E-02	5,56E-03	2,58E-02	0	0	3,58E-04	0	6,53E-04	0		
ETP-fw**	CTUe											
HTP-c**	CTUh	2,62E-10	2,30E-11	2,74E-10	0	0	1,51E-12	0	2,36E-12	0		
HTP-nc**	CTUh	6,64E-09	7,46E-10	6,97E-09	0	0	5,83E-11	0	6,15E-11	0		
SQP**	Dimensionless	5,16E+00	3,72E+00	2,42E+00	0	0	8,09E-02	0	3,09E-01	0		
Acronyms	GWP-GHG: The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013. PM = Particulate Matter emissions; IRP = Ionizing radiation, human health; ETP-fw = Eco-toxicity,											
	freshwater; HTP Land use related			icci ciiects, i	111	110 - 1	idilidil toxic	ity, iic	ni cancer er	iccis, 5QF -		

Use of resources

Table 7: Resource use - LIP 210 Floor Screed.

	Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	С3	C4	D		
PERE	MJ	6,65E-01	5,22E-01	3,24E-01	0	0	9,00E-01	0	1,25E-03	0		
PERM	MJ	1,92E-01	0	0	0	0	0	0	0	0		
PERT	MJ	8,57E-01	5,22E-01	3,24E-01	0	0	9,00E-01	0	1,25E-03	0		
PENRE	MJ	3,06E+00	9,80E-01	3,31E+00	0	0	7,52E+01	0	1,56E-01	0		
PENRM	MJ	0,00E+00	0	0	0	0	0	0	0	0		
PENRT	MJ	3,06E+00	9,80E-01	3,31E+00	0	0	7,52E+01	0	1,56E-01	0		
SM	kg	0	0	0	0	0	0	0	0	0		
RSF	MJ	0	0	0	0	0	0	0	0	0		
NRSF	MJ	0	0	0	0	0	0	0	0	0		
FW	m3	1,62E-01	2,46E+00	1,75E-01	0	0	2,45E-01	0	6,63E-03	0		
Acronyms	materials; PERN renewable prim renewable prim energy resource SM = Use of sec	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy re-sources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water										

Waste production

At end of use, when the hardened product is demolished, the LIP Floor Screeds are non-hazardous building waste. The waste from packing material are also assumed to be non-hazardous waste.

Table 8: Waste - LIP 210 Floor Screed

Results per declared unit										
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D
Hazardous waste disposed	kg	9,88E-06	3,16E-06	8,97E-06	0	0	1,71E-04	0	2,22E-07	0
Non-hazardous waste disposed	kg	5,46E-02	6,94E-02	5,86E-02	0	0	6,62E+00	0	1,00E+00	0
Radioactive waste disposed	kg	2,14E-05	5,55E-06	2,40E-05	0	0	4,79E-04	0	9,64E-07	0

Output flows

Table 9: Output flows - LIP 210 Floor Screed

Results per declared unit										
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D
Components for re-use	kg	0	0	0	0	0	0	0	0	0
Material for recycling	kg	0	0	6,00E-04	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0

Table 10: Biogenic Carbon - LIP 210 Floor Screed

	Unit	Quantity						
Biogenic carbon content in product	kg C	<5%						
Biogenic carbon content in packaging	kg C	49%						
Results per functional or declared unit. Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2.								

LIP 215 Floor Screed

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding thresholds values, safety margins or risks.

Core environmental impact indicators

Table 11: Core environmental impact results for the product LIP 215 Floor Screed

Results per declared unit											
Indicator	Unit	A1-A3	Α4	A5	В	C1	C2	C3	C4	D	
GWP- total	kg CO₂ eq.	3,67E-01	4,30E-02	4,33E-01	0	0	4,35E-03	0	5,28E-03	0	
GWP-fossil	kg CO₂ eq.	3,37E-01	5,49E-02	3,57E-01	0	0	4,35E-03	0	5,27E-03	0	
GWP-biogenic	kg CO₂ eq.	-9,53E-03	-1,20E-02	3,33E-02	0	0	4,62E-06	0	5,72E-06	0	
GWP- luluc	kg CO₂ eq.	5,43E-04	6,68E-05	5,51E-04	0	0	1,63E-06	0	4,97E-06	0	
ODP	kg CFC 11 eq.	3,14E-08	1,19E-08	3,26E-08	0	0	1,08E-09	0	2,13E-09	0	
AP	mol H⁺ eq.	2,28E-03	2,20E-04	2,38E-03	0	0	1,39E-05	0	4,95E-05	0	
EP-freshwater	kg PO ₄ 3- eq.	1,52E-04	2,16E-05	1,54E-04	0	0	2,83E-07	0	4,82E-07	0	
EP- marine	kg N eq.	3,38E-04	5,76E-05	3,51E-04	0	0	3,10E-06	0	1,72E-05	0	
EP-terrestrial	mol N eq.	4,11E-03	5,97E-04	4,18E-03	0	0	3,39E-05	0	1,88E-04	0	
POCP	kg NMVOC eq.	1,02E-03	2,11E-04	1,04E-03	0	0	1,33E-05	0	5,48E-05	0	
ADP-minerals&metals**	kg Sb eq.	6,86E-06	1,66E-07	7,09E-06	0	0	1,04E-08	0	1,20E-08	0	
ADP-fossil**	MJ	4,10E+00	9,21E-01	4,39E+00	0	0	7,08E-02	0	1,47E-01	0	
WDP **	m³	1,89E-01	1,05E-02	2,04E-01	0	0	2,43E-04	0	6,62E-03	0	
Acronyms	GWP-fossil = Glo	bal Warmir	ng Potential	fossil fuels; G	WP-	-bioge	nic = Global	Warr	ning Potent	ial biogenic;	
	GWP-luluc = Glo	bal Warmin	g Potential	land use and	land	use c	hange; ODP	= Der	oletion pote	ntial of the	
	stratospheric oz	one laver: A	P = Acidifica	ation potentia	al. Ad	ccumu	ılated Excee	dance	e: EP-freshw	ater =	
	Eutrophication (
	Eutrophication	•			_			•	•		
	Eutrophication				_		•		•		
							•			•	
	ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic										
	depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted										
	water consump	tion									

Additional environmental impact indicators

Table 12: Additional environmental impact results for the product LIP 215 Floor Screed

Results per declared unit												
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D		
GWP-GHG	kg CO₂ eq.	3,31E-01	4,32E+01	3,63E-01	0	0	4,32E+00	0	5,18E-03	0		
PM	disease inc.	1,73E-08	5,99E-09	1,76E-08	0	0	5,05E-10	0	9,97E-10	0		
IRP*	kBq U235 eq	2,05E-02	5,56E-03	2,81E-02	0	0	3,58E-04	0	6,53E-04	0		
ETP-fw**	CTUe	8,01E+00	7,36E-01	8,40E+00	0	0	5,53E-02	0	9,29E-02	0		
HTP-c**	CTUh	2,94E-10	2,30E-11	3,08E-10	0	0	1,51E-12	0	2,36E-12	0		
HTP-nc**	CTUh	7,48E-09	7,46E-10	7,85E-09	0	0	5,83E-11	0	6,15E-11	0		
SQP**	Dimensionless	5,01E+00	3,72E+00	2,25E+00	0	0	8,09E-02	0	3,09E-01	0		
Acronyms	GWP-GHG: The carbon dioxide equal to the GW	uptake and o /P indicator	emissions ar originally de	nd biogenic ca efined in EN 1	arbo .580	n stor 4:201	ed in the pr 2+A1:2013.	oduct	. This indica	tor is thus		
	freshwater; HTF	PM = Particulate Matter emissions; IRP = Ionizing radiation, human health; ETP-fw = Eco-toxicity, freshwater; HTP-c = Human toxicity, cancer effects; HTP-nc = Human toxicity, non-cancer effects; SQP = Land use related impacts/Soil quality.										

Use of resources

Table 13: Resource use - LIP 215 Floor Screed

Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	С3	C4	D	
PERE	MJ	7,05E-01	5,22E-01	3,65E-01	0	0	9,00E-01	0	1,25E-03	0	
PERM	MJ	1,92E-01	0	0	0	0	0	0	0	0	
PERT	MJ	8,97E-01	5,22E-01	3,65E-01	0	0	9,00E-01	0	1,25E-03	0	
PENRE	MJ	3,41E+00	9,80E-01	3,67E+00	0	0	7,52E+01	0	1,56E-01	0	
PENRM	MJ.	0,00E+00	0	0	0	0	0	0	0	0	
PENRT	MJ	3,41E+00	9,80E-01	3,67E+00	0	0	7,52E+01	0	1,56E-01	0	
SM	kg	0	0	0	0	0	0	0	0	0	
RSF	MJ	0	0	0	0	0	0	0	0	0	
NRSF	MJ	0	0	0	0	0	0	0	0	0	
FW	m3	1,84E-01	2,46E+00	1,99E-01	0	0	2,45E-01	0	6,63E-03	0	
Acronyms	PERE = Use of re materials; PERM renewable prim renewable prim energy resource SM = Use of sec secondary fuels	1 = Use of re ary energy i ary energy i s used as ra ondary mat	enewable processine processing pr	imary energy ENRE = Use o sed as raw ma ; PENRT = To Use of renewa	resc f no iteria tal u	ources n-rene als; PE se of r	used as ravewable prime ENRM = Use non-renewa	v mate lary el of no ble pr	erials; PERT nergy exclud n-renewable imary energ	= Total use of ding non- e primary gy re-sources;	

Waste production

At end of use, when the hardened product is demolished, the LIP Floor screeds are non-hazardous building waste. The waste from packing material are also assumed to be non-hazardous waste.

Table 14: Waste - LIP 215 Floor Screed

	Results per declared unit											
Indicator												
Hazardous waste disposed	kg	1,08E-05	3,16E-06	9,96E-06	0	0	1,71E-04	0	2,22E-07	0		
Non-hazardous waste disposed	kg	5,88E-02	6,94E-02	6,30E-02	0	0	6,62E+00	0	1,00E+00	0		
Radioactive waste disposed	kg	2,71E-05	5,55E-06	2,99E-05	0	0	4,79E-04	0	9,64E-07	0		

Output flows

Table 15: Output flows - LIP 215 Floor Screed

	Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D		
Components for re-use	kg	0	0	0	0	0	0	0	0	0		
Material for recycling	kg	0	0	6,00E-04	0	0	0	0	0	0		
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0		
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0		
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0		

Table 16: Biogenic Carbon - LIP 215 Floor Screed

	Unit	Quantity						
Biogenic carbon content in product	kg C	<5%						
Biogenic carbon content in packaging	kg C	49%						
Results per functional or declared unit. Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2.								

LIP 220 Floor Screed

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding thresholds values, safety margins or risks.

Core environmental impact indicators

Table 17: Core environmental impact results for the product LIP 220 Floor Screed

Results per declared unit											
Indicator	Unit	A1-A3	Α4	A5	В	C1	C2	C3	C4	D	
GWP- total	kg CO₂ eq.	2,84E-01	2,84E-01	3,45E-01	0	0	4,35E-03	0	5,28E-03	0	
GWP-fossil	kg CO₂ eq.	2,67E-01	5,49E-02	2,84E-01	0	0	4,35E-03	0	5,27E-03	0	
GWP-biogenic	kg CO₂ eq.	-9,90E-03	-1,20E-02	3,29E-02	0	0	4,62E-06	0	5,72E-06	0	
GWP- luluc	kg CO₂ eq.	6,29E-04	6,68E-05	6,41E-04	0	0	1,63E-06	0	4,97E-06	0	
ODP	kg CFC 11 eq.	2,49E-08	1,19E-08	2,58E-08	0	0	1,08E-09	0	2,13E-09	0	
AP	mol H⁺ eq.	1,82E-03	2,20E-04	1,90E-03	0	0	1,39E-05	0	4,95E-05	0	
EP-freshwater	kg PO ₄ 3- eq.	1,17E-04	2,16E-05	1,18E-04	0	0	2,83E-07	0	4,82E-07	0	
EP- marine	kg N eq.	2,88E-04	5,76E-05	2,98E-04	0	0	3,10E-06	0	1,72E-05	0	
EP-terrestrial	mol N eq.	3,39E-03	5,97E-04	3,43E-03	0	0	3,39E-05	0	1,88E-04	0	
POCP	kg NMVOC eq.	8,58E-04	2,11E-04	8,61E-04	0	0	1,33E-05	0	5,48E-05	0	
ADP-minerals&metals**	kg Sb eq.	5,22E-06	1,66E-07	5,37E-06	0	0	1,04E-08	0	1,20E-08	0	
ADP-fossil**	MJ	3,17E+00	9,21E-01	3,42E+00	0	0	7,08E-02	0	1,47E-01	0	
WDP **	m³	1,45E-01	1,05E-02	1,56E-01	0	0	2,43E-04	0	6,62E-03	0	
Acronyms	GWP-fossil = Glo	bal Warmir	ng Potential	fossil fuels; G	WP-	-bioge	nic = Global	Warr	ning Potent	ial biogenic;	
	GWP-luluc = Glo	bal Warmin	g Potential	land use and	land	l use c	hange; ODP	= Der	oletion pote	ntial of the	
	stratospheric oz	one laver; A	P = Acidifica	ation potentia	al, Ad	ccumu	ılated Excee	dance	e; EP-freshw	ater =	
	Eutrophication :			•					•		
	Eutrophication p	•			_			•	•		
		•			_		•		•		
	Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic										
	depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted										
	water consumpt	tion									

Additional environmental impact indicators

Table 18: Additional environmental impact results for the product LIP 220 Floor Screed

Results per declared unit												
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D		
GWP-GHG	kg CO₂ eq.	2,62E-01	4,32E+01	2,91E-01	0	0	4,32E+00	0	5,18E-03	0		
PM	disease inc.	1,54E-08	5,99E-09	1,56E-08	0	0	5,05E-10	0	9,97E-10	0		
IRP*	kBq U235 eq	1,64E-02	5,56E-03	2,37E-02	0	0	3,58E-04	0	6,53E-04	0		
ETP-fw**	CTUe	6,42E+00	7,36E-01	6,73E+00	0	0	5,53E-02	0	9,29E-02	0		
HTP-c**	CTUh	TUh 2,31E-10 2,30E-11 2,41E-10 0 0 1,51E-12 0 2,36E-12 0										
HTP-nc**	CTUh	5,83E-09	7,46E-10	6,12E-09	0	0	5,83E-11	0	6,15E-11	0		
SQP**	Dimensionless	5,25E+00	3,72E+00	2,50E+00	0	0	8,09E-02	0	3,09E-01	0		
Acronyms	GWP-GHG: The carbon dioxide u equal to the GW PM = Particulate freshwater; HTP Land use related	uptake and o /P indicator e Matter em r-c = Human	emissions and originally de hissions; IRP toxicity, can	nd biogenic ca efined in EN 1 = lonizing rac	arbo .580 diatio	n stor 4:201: on, hu	ed in the pro 2+A1:2013. man health;	oduct	. This indicat	tor is thus		

Use of resources

Table 19: Resource use - LIP 220 Floor Screed

Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D	
PERE	MJ	6,31E-01	5,22E-01	2,88E-01	0	0	9,00E-01	0	1,25E-03	0	
PERM	MJ	1,92E-01	0	0	0	0	0	0	0	0	
PERT	MJ	8,23E-01	5,22E-01	2,88E-01	0	0	9,00E-01	0	1,25E-03	0	
PENRE	MJ	2,74E+00	9,80E-01	2,97E+00	0	0	7,52E+01	0	1,56E-01	0	
PENRM	MJ.	0,00E+00	0	0	0	0	0	0	0	0	
PENRT	MJ	2,74E+00	9,80E-01	2,97E+00	0	0	7,52E+01	0	1,56E-01	0	
SM	kg	0	0	0	0	0	0	0	0	0	
RSF	MJ	0	0	0	0	0	0	0	0	0	
NRSF	MJ	0	0	0	0	0	0	0	0	0	
FW	m3	1,42E-01	2,46E+00	1,53E-01	0	0	2,45E-01	0	6,63E-03	0	
Acronyms	PERE = Use of re materials; PERM renewable prim renewable prim energy resource SM = Use of sec secondary fuels	1 = Use of re ary energy r ary energy r es used as ra ondary mate	enewable processines processing p	imary energy ENRE = Use o sed as raw ma s; PENRT = To Use of renew	reso f no ateria tal u	ources n-rene als; PE se of r	used as ravewable prim ENRM = Use non-renewa	v mate lary el of no ble pr	erials; PERT nergy exclud n-renewable imary energ	= Total use of ding non- e primary gy re-sources;	

Waste production

At end of use, when the hardened product is demolished, the LIP Floor screeds are non-hazardous building waste. The waste from packing material is also assumed to be non-hazardous waste.

Table 20: Waste - LIP 220 Floor Screed

Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D	
Hazardous waste disposed	kg	8,96E-06	3,16E-06	8,00E-06	0	0	1,71E-04	0	2,22E-07	0	
Non-hazardous waste disposed	kg	5,01E-02	6,94E-02	5,39E-02	0	0	6,62E+00	0	1,00E+00	0	
Radioactive waste disposed	kg	1,72E-05	5,55E-06	1,96E-05	0	0	4,79E-04	0	9,64E-07	0	

Output flows

Table 21: Output flows - LIP 220 Floor Screed

	Results per declared unit												
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D			
Components for re-use	kg	0	0	0	0	0	0	0	0	0			
Material for recycling	kg	0	0	6,00E-04	0	0	0	0	0	0			
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0			
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0			
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0			

Table 22: Biogenic Carbon - LIP 220 Floor Screed

	Unit	Quantity							
Biogenic carbon content in product	kg C	<5%							
Biogenic carbon content in packaging	kg C	49%							
Results per functional or declared unit. Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2.									

LIP 222 Floor Screed

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding thresholds values, safety margins or risks.

Core environmental impact indicators

Table 23: Core environmental impact results for the product LIP 222 Floor Screed

	Results per declared unit										
Indicator	Unit	A1-A3	Α4	A5	В	C1	C2	C3	C4	D	
GWP- total	kg CO₂ eq.	2,40E-01	4,30E-02	3,00E-01	0	0	4,35E-03	0	5,28E-03	0	
GWP-fossil	kg CO₂ eq.	1,92E-01	5,49E-02	2,06E-01	0	0	4,35E-03	0	5,27E-03	0	
GWP-biogenic	kg CO₂ eq.	-1,11E-02	-1,20E-02	3,16E-02	0	0	4,62E-06	0	5,72E-06	0	
GWP- luluc	kg CO₂ eq.	6,54E-04	6,68E-05	6,67E-04	0	0	1,63E-06	0	4,97E-06	0	
ODP	kg CFC 11 eq.	2,22E-08	1,19E-08	2,30E-08	0	0	1,08E-09	0	2,13E-09	0	
AP	mol H⁺ eq.	1,65E-03	2,20E-04	1,73E-03	0	0	1,39E-05	0	4,95E-05	0	
EP-freshwater	kg PO ₄ 3- eq.	1,29E-04	2,16E-05	1,30E-04	0	0	2,83E-07	0	4,82E-07	0	
EP- marine	kg N eq.	2,46E-04	5,76E-05	2,55E-04	0	0	3,10E-06	0	1,72E-05	0	
EP-terrestrial	mol N eq.	2,82E-03	5,97E-04	2,82E-03	0	0	3,39E-05	0	1,88E-04	0	
POCP	kg NMVOC eq.	7,21E-04	2,11E-04	7,17E-04	0	0	1,33E-05	0	5,48E-05	0	
ADP-minerals&metals**	kg Sb eq.	4,82E-06	1,66E-07	4,95E-06	0	0	1,04E-08	0	1,20E-08	0	
ADP-fossil**	MJ	3,09E+00	9,21E-01	3,33E+00	0	0	7,08E-02	0	1,47E-01	0	
WDP **	m³	1,33E-01	1,05E-02	1,43E-01	0	0	2,43E-04	0	6,62E-03	0	
Acronyms	GWP-fossil = Glo	bal Warmir	ng Potential	fossil fuels; G	WP-	-bioge	nic = Global	Warr	ning Potent	ial biogenic;	
	GWP-luluc = Glo	bal Warmin	g Potential	land use and	land	l use c	hange; ODP	= Der	oletion pote	ntial of the	
	stratospheric oz	one laver; A	P = Acidifica	ation potentia	al, Ad	ccumu	ılated Excee	dance	e; EP-freshw	ater =	
	Eutrophication (
	Eutrophication	,			_			•	•		
					_						
	Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic										
	· · ·										
	depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted										
	water consumption										

Additional environmental impact indicators

Table 24: Additional environmental impact results for the product LIP 222 Floor Screed

Results per declared unit												
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D		
GWP-GHG	kg CO₂ eq.	1,89E-01	4,32E+01	2,13E-01	0	0	4,32E+00	0	5,18E-03	0		
PM	disease inc.	1,43E-08	5,99E-09	1,44E-08	0	0	5,05E-10	0	9,97E-10	0		
IRP*	kBq U235 eq	1,29E-02	5,56E-03	2,01E-02	0	0	3,58E-04	0	6,53E-04	0		
ETP-fw**	CTUe	5,68E+00	7,36E-01	5,95E+00	0	0	5,53E-02	0	9,29E-02	0		
HTP-c**	CTUh	2,07E-10	2,30E-11	2,15E-10	0	0	1,51E-12	0	2,36E-12	0		
HTP-nc**	CTUh	5,07E-09	7,46E-10	5,32E-09	0	0	5,83E-11	0	6,15E-11	0		
SQP**	Dimensionless	5,31E+00	3,72E+00	2,57E+00	0	0	8,09E-02	0	3,09E-01	0		
Acronyms	carbon dioxide equal to the GW	GWP-GHG: The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.										
	freshwater; HTF	PM = Particulate Matter emissions; IRP = Ionizing radiation, human health; ETP-fw = Eco-toxicity, freshwater; HTP-c = Human toxicity, cancer effects; HTP-nc = Human toxicity, non-cancer effects; SQP = Land use related impacts/Soil quality.										

Use of resources

Table 25: Resource use - LIP 222 Floor Screed

Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	С3	C4	D	
PERE	MJ	6,15E-01	5,22E-01	2,71E-01	0	0	9,00E-01	0	1,25E-03	0	
PERM	MJ	1,92E-01	0	0	0	0	0	0	0	0	
PERT	MJ	8,07E-01	5,22E-01	2,71E-01	0	0	9,00E-01	0	1,25E-03	0	
PENRE	MJ	2,41E+00	9,80E-01	2,62E+00	0	0	7,52E+01	0	1,56E-01	0	
PENRM	MJ.	0,00E+00	0	0	0	0	0	0	0	0	
PENRT	MJ	2,41E+00	9,80E-01	2,62E+00	0	0	7,52E+01	0	1,56E-01	0	
SM	kg	0	0	0	0	0	0	0	0	0	
RSF	MJ	0	0	0	0	0	0	0	0	0	
NRSF	MJ	0	0	0	0	0	0	0	0	0	
FW	m3	1,30E-01	2,46E+00	1,40E-01	0	0	2,45E-01	0	6,63E-03	0	
Acronyms	materials; PERM renewable prim renewable prim energy resource	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy re-sources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable									

Waste production

At end of use, when the hardened product is demolished, the LIP Floor Screeds are non-hazardous building waste. The waste from packing material is also assumed to be non-hazardous waste.

Table 26: Waste - LIP 222 Floor Screed

Results per declared unit										
Indicator Unit A1-A3 A4 A5 B C1 C2 C3 C4 D										
Hazardous waste disposed	kg	8,86E-06	3,16E-06	7,90E-06	0	0	1,71E-04	0	2,22E-07	0
Non-hazardous waste disposed	kg	4,61E-02	6,94E-02	4,97E-02	0	0	6,62E+00	0	1,00E+00	0
Radioactive waste disposed	kg	1,48E-05	5,55E-06	1,70E-05	0	0	4,79E-04	0	9,64E-07	0

Output flows

Table 27: Output flows - LIP 222 Floor Screed

Results per declared unit										
Indicator Unit A1-A3 A4 A5 B C1 C2 C3 C4 D										
Components for re-use	kg	0	0	0	0	0	0	0	0	0
Material for recycling	kg	0	0	6,00E-04	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0

Table 28: Biogenic Carbon LIP 222 Floor Screed

	Unit	Quantity					
Biogenic carbon content in product	kg C	<5%					
Biogenic carbon content in packaging	kg C	49%					
Results per functional or declared unit. Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2.							

LIP 226 Floor Screed

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding thresholds values, safety margins or risks.

Core environmental impact indicators

Table 29: Core environmental impact results for the product LIP 226 Floor Screed

	Results per declared unit										
Indicator	Unit	A1-A3	Α4	A5	В	C1	C2	С3	C4	D	
GWP- total	kg CO₂ eq.	2,87E-01	4,30E-02	3,49E-01	0	0	4,35E-03	0	5,28E-03	0	
GWP-fossil	kg CO₂ eq.	2,70E-01	5,49E-02	2,87E-01	0	0	4,35E-03	0	5,27E-03	0	
GWP-biogenic	kg CO₂ eq.	-9,86E-03	-1,20E-02	3,30E-02	0	0	4,62E-06	0	5,72E-06	0	
GWP- luluc	kg CO₂ eq.	6,29E-04	6,68E-05	6,41E-04	0	0	1,63E-06	0	4,97E-06	0	
ODP	kg CFC 11 eq.	2,46E-08	1,19E-08	2,55E-08	0	0	1,08E-09	0	2,13E-09	0	
AP	mol H⁺ eq.	1,85E-03	2,20E-04	1,94E-03	0	0	1,39E-05	0	4,95E-05	0	
EP-freshwater	kg PO ₄ 3- eq.	1,18E-04	2,16E-05	1,19E-04	0	0	2,83E-07	0	4,82E-07	0	
EP- marine	kg N eq.	2,90E-04	5,76E-05	3,01E-04	0	0	3,10E-06	0	1,72E-05	0	
EP-terrestrial	mol N eq.	3,43E-03	5,97E-04	3,47E-03	0	0	3,39E-05	0	1,88E-04	0	
POCP	kg NMVOC eq.	8,66E-04	2,11E-04	8,69E-04	0	0	1,33E-05	0	5,48E-05	0	
ADP-minerals&metals**	kg Sb eq.	5,33E-06	1,66E-07	5,49E-06	0	0	1,04E-08	0	1,20E-08	0	
ADP-fossil**	MJ	3,21E+00	9,21E-01	3,46E+00	0	0	7,08E-02	0	1,47E-01	0	
WDP **	m³	1,49E-01	1,05E-02	1,60E-01	0	0	2,43E-04	0	6,62E-03	0	
Acronyms	GWP-fossil = Glo	bal Warmir	ng Potential	fossil fuels; G	WP-	-bioge	nic = Globa	Warr	ming Potent	ial biogenic;	
	GWP-luluc = Glo	bal Warmin	g Potential	land use and	land	use c	hange; ODP	= De	pletion pote	ntial of the	
	stratospheric oz	one laver; A	P = Acidifica	ation potentia	al, Ad	ccumu	ılated Excee	dance	e; EP-freshw	ater =	
	Eutrophication (
		•			_			•	•		
	Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone;										
	ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic										
	depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption										

Additional environmental impact indicators

Table 30: Additional environmental impact results for the product LIP 226 Floor Screed

Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D	
GWP-GHG	kg CO₂ eq.	2,65E-01	4,32E+01	2,94E-01	0	0	4,32E+00	0	5,18E-03	0	
PM	disease inc.	1,56E-08	5,99E-09	1,58E-08	0	0	5,05E-10	0	9,97E-10	0	
IRP*	kBq U235 eq	1,64E-02	5,56E-03	2,38E-02	0	0	3,58E-04	0	6,53E-04	0	
ETP-fw**	CTUe	CTUE 6,55E+00 7,36E-01 6,87E+00 0 0 5,53E-02 0 9,29E-02 0									
HTP-c**	CTUh	CTUh 2,36E-10 2,30E-11 2,46E-10 0 0 1,51E-12 0 2,36E-12 0									
HTP-nc**	CTUh	5,95E-09	7,46E-10	6,24E-09	0	0	5,83E-11	0	6,15E-11	0	
SQP**	Dimensionless	5,26E+00	3,72E+00	2,52E+00	0	0	8,09E-02	0	3,09E-01	0	
Acronyms	GWP-GHG: The carbon dioxide to equal to the GW PM = Particulate freshwater; HTP Land use related	uptake and o /P indicator e Matter em r-c = Human	emissions and originally de hissions; IRP toxicity, can	nd biogenic ca efined in EN 1 = Ionizing rac	arbo .580 diatio	n stor 4:201: on, hu	ed in the pro 2+A1:2013. man health;	oduct	. This indicat	tor is thus	

Use of resources

Table 31: Resource use - LIP 226 Floor Screed

	Results per declared unit										
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	С3	C4	D	
PERE	MJ	6,32E-01	5,22E-01	2,89E-01	0	0	9,00E-01	0	1,25E-03	0	
PERM	MJ	1,92E-01	0	0	0	0	0	0	0	0	
PERT	MJ	8,24E-01	5,22E-01	2,89E-01	0	0	9,00E-01	0	1,25E-03	0	
PENRE	MJ	2,78E+00	9,80E-01	3,01E+00	0	0	7,52E+01	0	1,56E-01	0	
PENRM	MJ.	0,00E+00	0	0	0	0	0	0	0	0	
PENRT	MJ	2,78E+00	9,80E-01	3,01E+00	0	0	7,52E+01	0	1,56E-01	0	
SM	kg	0	0	0	0	0	0	0	0	0	
RSF	MJ	0	0	0	0	0	0	0	0	0	
NRSF	MJ	0	0	0	0	0	0	0	0	0	
FW	m3	1,45E-01	2,46E+00	1,56E-01	0	0	2,45E-01	0	6,63E-03	0	
Acronyms	materials; PERN renewable prim renewable prim energy resource SM = Use of sec	m3 1,45E-01 2,46E+00 1,56E-01 0 0 2,45E-01 0 6,63E-03 0 PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water									

At end of use, when the hardened product is demolished, the LIP Floor Screeds are non-hazardous building waste. The waste from packing material is also assumed to be non-hazardous waste.

Table 32: Waste - LIP 226 Floor Screed

Results per declared unit											
Indicator Unit A1-A3 A4 A5 B C1 C2 C3 C4 D											
Hazardous waste disposed	kg	9,13E-06	3,16E-06	8,18E-06	0	0	1,71E-04	0	2,22E-07	0	
Non-hazardous waste disposed	Non-hazardous waste disposed kg 5,08E-02 6,94E-02 5,46E-02 0 0 6,62E+00 0 1,00E+00 0									0	
Radioactive waste disposed	kg	1,72E-05	5,55E-06	1,96E-05	0	0	4,79E-04	0	9,64E-07	0	

Output flows

Table 33: Output flows - LIP 226 Floor Screed

Results per declared unit										
Indicator	Indicator									
Components for re-use	kg	0	0	0	0	0	0	0	0	0
Material for recycling	kg	0	0	6.00E-04	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0

Table 34: Biogenic Carbon - LIP 226 Floor Screed

	Unit	Quantity					
Biogenic carbon content in product	kg C	<5%					
Biogenic carbon content in packaging	kg C	49%					
Results per functional or declared unit. Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2.							

LIP 228 Floor Screed

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding thresholds values, safety margins or risks.

Core environmental impact indicators

Table 35: Core environmental impact results for the product LIP 228 Floor Screed

	Results per declared unit										
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D	
GWP- total	kg CO₂ eq.	3,15E-01	4,30E-02	3,77E-01	0	0	4,35E-03	0	5,28E-03	0	
GWP-fossil	kg CO₂ eq.	1,54E-01	5,49E-02	1,66E-01	0	0	4,35E-03	0	5,27E-03	0	
GWP-biogenic	kg CO₂ eq.	-1,22E-02	-1,20E-02	3,05E-02	0	0	4,62E-06	0	5,72E-06	0	
GWP- luluc	kg CO₂ eq.	3,59E-04	6,68E-05	3,57E-04	0	0	1,63E-06	0	4,97E-06	0	
ODP	kg CFC 11 eq.	1,62E-08	1,19E-08	1,67E-08	0	0	1,08E-09	0	2,13E-09	0	
AP	mol H⁺ eq.	1,01E-03	2,20E-04	1,05E-03	0	0	1,39E-05	0	4,95E-05	0	
EP-freshwater	kg PO ₄ 3- eq.	1,70E-04	2,16E-05	1,73E-04	0	0	2,83E-07	0	4,82E-07	0	
EP- marine	kg N eq.	1,12E-04	5,76E-05	1,14E-04	0	0	3,10E-06	0	1,72E-05	0	
EP-terrestrial	mol N eq.	2,07E-03	5,97E-04	2,04E-03	0	0	3,39E-05	0	1,88E-04	0	
POCP	kg NMVOC eq.	5,84E-04	2,11E-04	5,73E-04	0	0	1,33E-05	0	5,48E-05	0	
ADP-minerals&metals**	kg Sb eq.	6,75E-07	1,66E-07	5,96E-07	0	0	1,04E-08	0	1,20E-08	0	
ADP-fossil**	MJ	2,83E+00	9,21E-01	3,06E+00	0	0	7,08E-02	0	1,47E-01	0	
WDP **	m³	2,62E-02	1,05E-02	3,14E-02	0	0	2,43E-04	0	6,62E-03	0	
Acronyms	GWP-fossil = Glo	bal Warmir	ng Potential	fossil fuels; G	WP-	-bioge	nic = Globa	l Warr	ning Potent	ial biogenic;	
	GWP-luluc = Glo	bal Warmin	g Potential	land use and	land	use c	hange; ODP	= Dep	oletion pote	ntial of the	
	stratospheric oz	one laver: A	P = Acidifica	ation potentia	al. Ad	ccumu	lated Excee	dance	e: EP-freshw	ater =	
	Eutrophication			•	•				•		
	Eutrophication				_			•	•		
					_						
	Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic										
	depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted										
	water consumption										

Additional environmental impact indicators

Table 36: Additional environmental impact results for the product LIP 228 Floor Screed

Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	С3	C4	D	
GWP-GHG	kg CO₂ eq.	4,51E-02	4,32E+01	6,24E-02	0	0	4,32E+00	0	5,18E-03	0	
PM	disease inc.	3,75E-09	5,99E-09	3,36E-09	0	0	5,05E-10	0	9,97E-10	0	
IRP*	kBq U235 eq	3,24E-03	5,56E-03	9,89E-03	0	0	3,58E-04	0	6,53E-04	0	
ETP-fw**	CTUe	7,73E-01	7,36E-01	8,01E-01	0	0	5,53E-02	0	9,29E-02	0	
HTP-c**	CTUh	2,48E-11	2,30E-11	2,46E-11	0	0	1,51E-12	0	2,36E-12	0	
HTP-nc**	CTUh	6,08E-10	7,46E-10	6,32E-10	0	0	5,83E-11	0	6,15E-11	0	
SQP**	Dimensionless	3,85E+00	3,72E+00	1,04E+00	0	0	8,09E-02	0	3,09E-01	0	
Acronyms	GWP-GHG: The carbon dioxide of equal to the GW	uptake and /P indicator e Matter em	emissions an originally do	nd biogenic ca efined in EN 1 = Ionizing rad	arbo .580 diatio	n stor 4:201 on, hu	ed in the pr 2+A1:2013. man health	oduct ; ETP-	. This indica fw = Eco-tox	tor is thus	
		freshwater; HTP-c = Human toxicity, cancer effects; HTP-nc = Human toxicity, non-cancer effects; SQP = Land use related impacts/Soil quality.									

Use of resources

Table 37: Resource use - LIP 228 Floor Screed

Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	С3	C4	D	
PERE	MJ	6,18E-01	5,22E-01	2,74E-01	0	0	9,00E-01	0	1,25E-03	0	
PERM	MJ	1,92E-01	0	0	0	0	0	0	0	0	
PERT	MJ	8,10E-01	5,22E-01	2,74E-01	0	0	9,00E-01	0	1,25E-03	0	
PENRE	MJ	2,15E+00	9,80E-01	2,35E+00	0	0	7,52E+01	0	1,56E-01	0	
PENRM	MJ.	0,00E+00	0	0	0	0	0	0	0	0	
PENRT	MJ	2,15E+00	9,80E-01	2,35E+00	0	0	7,52E+01	0	1,56E-01	0	
SM	kg	0	0	0	0	0	0	0	0	0	
RSF	MJ	0	0	0	0	0	0	0	0	0	
NRSF	MJ	0	0	0	0	0	0	0	0	0	
FW	m3	1,49E-02	2,46E+00	1,93E-02	0	0	2,45E-01	0	6,63E-03	0	
Acronyms	PERE = Use of re materials; PERM renewable prim renewable prim energy resource SM = Use of sec secondary fuels	A = Use of re lary energy re lary energy re les used as ra londary mat	enewable processing pr	imary energy ENRE = Use o sed as raw ma s; PENRT = To Use of renew	resc f no iteria tal u	ources n-rene als; PE se of i	s used as ravewable prim ENRM = Use non-renewa	v mat lary el of no ble pr	erials; PERT nergy exclud n-renewable imary energ	= Total use of ding non- e primary gy re-sources;	

At end of use, when the hardened product is demolished, the LIP Floor Screeds are non-hazardous building waste. The waste from packing material is also assumed to be non-hazardous waste.

Table 38: Waste - LIP 228 Floor Screed

Results per declared unit										
Indicator	Indicator Unit A1-A3 A4 A5 B C1 C2 C3 C4 D									
Hazardous waste disposed	kg	4,14E-05	3,16E-06	4,20E-05	0	0	1,71E-04	0	2,22E-07	0
Non-hazardous waste disposed	Non-hazardous waste disposed kg 1,13E-02 6,94E-02 1,31E-02 0 0 6,62E+00 0 1,00E+00 0									
Radioactive waste disposed	kg	1,32E-05	5,55E-06	1,54E-05	0	0	4,79E-04	0	9,64E-07	0

Output flows

Table 39: Output flows - LIP 228 Floor Screed

Results per declared unit											
Indicator	Indicator Unit A1-A3 A4 A5 B C1 C2 C3 C4 D										
Components for re-use	kg	0	0	0	0	0	0	0	0	0	
Material for recycling	kg	0	0	6,00E-04	0	0	0	0	0	0	
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	

Table 40: Biogenic Carbon - LIP 228 Floor Screed

	Unit	Quantity					
Biogenic carbon content in product	kg C	<5%					
Biogenic carbon content in packaging	kg C	49%					
Results per functional or declared unit. Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2.							

LIP 230/Bostik 3050 Fine Plus

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding thresholds values, safety margins or risks.

Core environmental impact indicators

Table 41: Core environmental impact results for the product LIP 230/Bostik 3050 Fine Plus

Results per declared unit										
Indicator	Unit	A1-A3	Α4	A5	В	C1	C2	C3	C4	D
GWP- total	kg CO₂ eq.	5,83E-01	4,30E-02	6,59E-01	0	0	4,35E-03	0	5,28E-03	0
GWP-fossil	kg CO₂ eq.	5,07E-01	5,49E-02	5,36E-01	0	0	4,35E-03	0	5,27E-03	0
GWP-biogenic	kg CO₂ eq.	-8,48E-03	-1,20E-02	3,44E-02	0	0	4,62E-06	0	5,72E-06	0
GWP- luluc	kg CO₂ eq.	4,67E-04	6,68E-05	4,71E-04	0	0	1,63E-06	0	4,97E-06	0
ODP	kg CFC 11 eq.	4,15E-08	1,19E-08	4,33E-08	0	0	1,08E-09	0	2,13E-09	0
AP	mol H⁺ eq.	2,95E-03	2,20E-04	3,09E-03	0	0	1,39E-05	0	4,95E-05	0
EP-freshwater	kg PO₄³- eq.	2,08E-04	2,16E-05	2,13E-04	0	0	2,83E-07	0	4,82E-07	0
EP- marine	kg N eq.	4,63E-04	5,76E-05	4,82E-04	0	0	3,10E-06	0	1,72E-05	0
EP-terrestrial	mol N eq.	5,45E-03	5,97E-04	5,59E-03	0	0	3,39E-05	0	1,88E-04	0
POCP	kg NMVOC eq.	1,36E-03	2,11E-04	1,38E-03	0	0	1,33E-05	0	5,48E-05	0
ADP-minerals&metals**	kg Sb eq.	8,35E-06	1,66E-07	8,66E-06	0	0	1,04E-08	0	1,20E-08	0
ADP-fossil**	MJ	5,39E+00	9,21E-01	5,75E+00	0	0	7,08E-02	0	1,47E-01	0
WDP **	m³	2,32E-01	1,05E-02	2,51E-01	0	0	2,43E-04	0	6,62E-03	0
Acronyms	GWP-fossil = Glo GWP-luluc = Glo stratospheric oz Eutrophication p Eutrophication p Eutrophication p ADP-minerals&r depletion for for water consumpt	obal Warmin obal Warmin one layer; A cotential, fra cotential, Ac metals = Abi ssil resource	ng Potential g Potential P = Acidifica action of nu action of nu ccumulated otic depletion	fossil fuels; G land use and ation potentia trients reachi trients reachi Exceedance; on potential f	SWP- land al, Ad ng fr ng m POC	bioge use of ccumu reshw narine P = Fo on-fos	nic = Globa hange; ODP llated Excee ater end con end compa rmation po- ssil resource	Warr = Dep dance mpart rtmer tential	ming Potent pletion pote pletion pote pletion pote pletion pote pletion pote ment; EP-m pletion pote pletion	ial biogenic; ntial of the ater = arine = trial = neric ozone; iotic

Additional environmental impact indicators

Table 42: Additional environmental impact results for the product LIP 230/Bostik 3050 Fine Plus

Results per declared unit												
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D		
GWP-GHG	kg CO₂ eq.	5,00E-01	4,32E+01	5,40E-01	0	0	4,32E+00	0	5,18E-03	0		
PM	disease inc.	2,05E-08	5,99E-09	2,09E-08	0	0	5,05E-10	0	9,97E-10	0		
IRP*	kBq U235 eq	2,93E-02	5,56E-03	3,72E-02	0	0	3,58E-04	0	6,53E-04	0		
ETP-fw**	CTUe	1,01E+01	7,36E-01	1,06E+01	0	0	5,53E-02	0	9,29E-02	0		
HTP-c**	CTUh	CTUh 3,64E-10 2,30E-11 3,80E-10 0 0 1,51E-12 0 2,36E-12 0										
HTP-nc**	CTUh	9,78E-09	7,46E-10	1,03E-08	0	0	5,83E-11	0	6,15E-11	0		
SQP**	Dimensionless	5,06E+00	3,72E+00	2,31E+00	0	0	8,09E-02	0	3,09E-01	0		
Acronyms	GWP-GHG: The carbon dioxide of equal to the GW PM = Particulate freshwater; HTP Land use related	uptake and o /P indicator e Matter em r-c = Human	emissions and originally de hissions; IRP toxicity, can	nd biogenic ca efined in EN 1 = Ionizing rac	arbo .580 diatio	n stor 4:201: on, hu	ed in the pro 2+A1:2013. man health	oduct	. This indica fw = Eco-tox	tor is thus		

Use of resources

Table 43: Resource use - LIP 230/Bostik 3050 Fine Plus

Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	С3	C4	D	
PERE	MJ	8,02E-01	5,22E-01	4,67E-01	0	0	9,00E-01	0	1,25E-03	0	
PERM	MJ	1,92E-01	0	0	0	0	0	0	0	0	
PERT	MJ	9,94E-01	5,22E-01	4,67E-01	0	0	9,00E-01	0	1,25E-03	0	
PENRE	MJ	4,51E+00	9,80E-01	4,83E+00	0	0	7,52E+01	0	1,56E-01	0	
PENRM	MJ.	0,00E+00	0	0	0	0	0	0	0	0	
PENRT	MJ	4,51E+00	9,80E-01	4,83E+00	0	0	7,52E+01	0	1,56E-01	0	
SM	kg	0	0	0	0	0	0	0	0	0	
RSF	MJ	0	0	0	0	0	0	0	0	0	
NRSF	MJ	0	0	0	0	0	0	0	0	0	
FW	m3	2,27E-01	2,46E+00	2,45E-01	0	0	2,45E-01	0	6,63E-03	0	
Acronyms	materials; PERN renewable prim renewable prim energy resource SM = Use of sec	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of not fresh water									

At end of use, when the hardened product is demolished, the LIP Floor Screeds are non-hazardous building waste. The waste from packing material is also assumed to be non-hazardous waste.

Table 44: Waste - LIP 230/Bostik 3050 Fine Plus

Results per declared unit										
Indicator	Indicator Unit A1-A3 A4 A5 B C1 C2 C3 C4 D									
Hazardous waste disposed	kg	1,39E-05	3,16E-06	1,32E-05	0	0	1,71E-04	0	2,22E-07	0
Non-hazardous waste disposed	Non-hazardous waste disposed kg 7,05E-02 6,94E-02 7,53E-02 0 0 6,62E+00 0 1,00E+00 0									0
Radioactive waste disposed	kg	2,80E-05	5,55E-06	3,10E-05	0	0	4,79E-04	0	9,64E-07	0

Output flows

Table 45: Output flows - LIP 230/Bostik 3050 Fine Plus

Results per declared unit											
Indicator Unit A1-A3 A4 A5 B C1 C2 C3 C4 D											
Components for re-use	kg	0	0	0	0	0	0	0	0	0	
Material for recycling	kg	0	0	6,00E-04	0	0	0	0	0	0	
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	
Exported energy. electricity	MJ	0	0	0	0	0	0	0	0	0	
Exported energy. thermal	MJ	0	0	0	0	0	0	0	0	0	

Information on biogenic carbon content

Table 46: Biogenic Carbon - LIP 230/Bostik 3050 Fine Plus

	Unit	Quantity				
Biogenic carbon content in product	kg C	<5%				
Biogenic carbon content in packaging	kg C	49%				
Results per functional or declared unit. Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2.						

LIP 245

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding thresholds values, safety margins or risks.

Core environmental impact indicators

Table 47: Core environmental impact results for the product LIP 245

		R	esults per	declared ι	ınit					
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D
GWP- total	kg CO₂ eq.	4,27E-01	4,36E-02	4,90E-01	0	0	4,35E-03	0	5,28E-03	0
GWP-fossil	kg CO₂ eq.	3,54E-01	5,36E-02	3,77E-01	0	0	4,35E-03	0	5,27E-03	0
GWP-biogenic	kg CO₂ eq.	-7,02E-03	-1,01E-02	2,92E-02	0	0	4,62E-06	0	5,72E-06	0
GWP- luluc	kg CO₂ eq.	5,42E-04	5,94E-05	5,58E-04	0	0	1,63E-06	0	4,97E-06	0
ODP	kg CFC 11 eq.	2,79E-08	1,17E-08	2,91E-08	0	0	1,08E-09	0	2,13E-09	0
AP	mol H⁺ eq.	2,02E-03	2,10E-04	2,13E-03	0	0	1,39E-05	0	4,95E-05	0
EP-freshwater	kg PO ₄ 3- eq.	1,47E-04	1,88E-05	1,52E-04	0	0	2,83E-07	0	4,82E-07	0
EP- marine	kg N eq.	3,43E-04	5,39E-05	3,59E-04	0	0	3,10E-06	0	1,72E-05	0
EP-terrestrial	mol N eq.	3,89E-03	5,61E-04	3,98E-03	0	0	3,39E-05	0	1,88E-04	0
POCP	kg NMVOC eq.	9,90E-04	2,01E-04	1,01E-03	0	0	1,33E-05	0	5,48E-05	0
ADP-minerals&metals**	kg Sb eq.	5,16E-06	1,59E-07	5,31E-06	0	0	1,04E-08	0	1,20E-08	0
ADP-fossil**	MJ	3,73E+00	9,02E-01	4,03E+00	0	0	7,08E-02	0	1,47E-01	0
WDP **	m³	1,46E-01	9,65E-03	1,59E-01	0	0	2,43E-04	0	6,62E-03	0
Acronyms										

Additional environmental impact indicators

Table 48: Additional environmental impact results for the product LIP 245

	Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D		
GWP-GHG	kg CO₂ eq.	3,50E-01	4,32E+01	3,82E-01	0	0	4,32E+00	0	5,18E-03	0		
PM	disease inc.	1,56E-08	5,87E-09	1,60E-08	0	0	5,05E-10	0	9,97E-10	0		
IRP*	kBq U235 eq	2,00E-02	5,29E-03	2,78E-02	0	0	3,58E-04	0	6,53E-04	0		
ETP-fw**	CTUe	6,79E+00	7,14E-01	7,14E+00	0	0	5,53E-02	0	9,29E-02	0		
HTP-c**	CTUh	2,38E-10	2,20E-11	2,49E-10	0	0	1,51E-12	0	2,36E-12	0		
HTP-nc**	CTUh	6,33E-09	7,25E-10	6,65E-09	0	0	5,83E-11	0	6,15E-11	0		
SQP**	Dimensionless	4,66E+00	3,26E+00	2,37E+00	0	0	8,09E-02	0	3,09E-01	0		
Acronyms	carbon dioxide u equal to the GW	GWP-GHG: The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.										
	PM = Particulate Matter emissions; IRP = Ionizing radiation, human health; ETP-fw = Eco-toxicity, freshwater; HTP-c = Human toxicity, cancer effects; HTP-nc = Human toxicity, non-cancer effects; SQP = Land use related impacts/Soil quality.											

Use of resources

Table 49: Resource use - LIP 245

Results per declared unit

Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D		
PERE	MJ	5,83E-01	4,41E-01	3,22E-01	0	0	9,00E-01	0	1,25E-03	0		
PERM	MJ	1,92E-01	0	0	0	0	0	0	0	0		
PERT	MJ	7,75E-01	4,41E-01	3,22E-01	0	0	9,00E-01	0	1,25E-03	0		
PENRE	MJ	3,32E+00	9,60E-01	3,60E+00	0	0	7,52E+01	0	1,56E-01	0		
PENRM	MJ.	0,00E+00	0	0	0	0	0	0	0	0		
PENRT	MJ	3,32E+00	9,60E-01	3,60E+00	0	0	7,52E+01	0	1,56E-01	0		
SM	kg	0	0	0	0	0	0	0	0	0		
RSF	MJ	0	0	0	0	0	0	0	0	0		
NRSF	MJ	0	0	0	0	0	0	0	0	0		
FW	m3	1,43E-01	2,45E+00	1,56E-01	0	0	2,45E-01	0	6,63E-03	0		
Acronyms	materials; PERM renewable prim renewable prim energy resource SM = Use of sec	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water										

At end of use, when the hardened product is demolished, the LIP Floor Screeds are non-hazardous building waste. The waste from packing material is also assumed to be non-hazardous waste.

Table 50: Waste - LIP 245

Results per declared unit											
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D	
Hazardous waste disposed	kg	1,03E-05	2,93E-06	9,63E-06	0	0	1,71E-04	0	2,22E-07	0	
Non-hazardous waste disposed	kg	5,06E-02	6,89E-02	5,42E-02	0	0	6,62E+00	0	1,00E+00	0	
Radioactive waste disposed	kg	1,49E-05	5,45E-06	1,73E-05	0	0	4,79E-04	0	9,64E-07	0	

Output flows

Table 51: Output flows - LIP 245

	Results per declared unit												
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D			
Components for re-use	kg	0	0	0	0	0	0	0	0	0			
Material for recycling	kg	0	0	6,00E-04	0	0	0	0	0	0			
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0			
Exported energy. electricity	MJ	0	0	0	0	0	0	0	0	0			
Exported energy. thermal	MJ	0	0	0	0	0	0	0	0	0			

Table 52: Biogenic Carbon - LIP 245

	Unit	Quantity								
Biogenic carbon content in product	kg C	<5%								
Biogenic carbon content in packaging	kg C	49%								
Results per functional or declared unit. Note: 1 kg biogenic carbon is eq	Results per functional or declared unit. Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2.									

LIP 250

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding thresholds values, safety margins or risks.

Core environmental impact indicators

Table 53: Core environmental impact results for the product LIP 250

		R	esults per	declared ι	unit					
Indicator	Unit	A1-A3	Α4	A5	В	C1	C2	C3	C4	D
GWP- total	kg CO₂ eq.	2,49E-01	4,30E-02	3,09E-01	0	0	4,35E-03	0	5,28E-03	0
GWP-fossil	kg CO₂ eq.	1,37E-01	5,49E-02	1,47E-01	0	0	4,35E-03	0	5,27E-03	0
GWP-biogenic	kg CO₂ eq.	-1,21E-02	-1,20E-02	3,06E-02	0	0	4,62E-06	0	5,72E-06	0
GWP- luluc	kg CO₂ eq.	4,30E-04	6,68E-05	4,32E-04	0	0	1,63E-06	0	4,97E-06	0
ODP	kg CFC 11 eq.	1,36E-08	1,19E-08	1,39E-08	0	0	1,08E-09	0	2,13E-09	0
AP	mol H⁺ eq.	8,76E-04	2,20E-04	9,15E-04	0	0	1,39E-05	0	4,95E-05	0
EP-freshwater	kg PO ₄ ³⁻ eq.	1,28E-04	2,16E-05	1,29E-04	0	0	2,83E-07	0	4,82E-07	0
EP- marine	kg N eq.	1,11E-04	5,76E-05	1,12E-04	0	0	3,10E-06	0	1,72E-05	0
EP-terrestrial	mol N eq.	1,92E-03	5,97E-04	1,88E-03	0	0	3,39E-05	0	1,88E-04	0
POCP	kg NMVOC eq.	5,35E-04	2,11E-04	5,21E-04	0	0	1,33E-05	0	5,48E-05	0
ADP-minerals&metals**	kg Sb eq.	6,38E-07	1,66E-07	5,58E-07	0	0	1,04E-08	0	1,20E-08	0
ADP-fossil**	MJ	2,16E+00	9,21E-01	2,35E+00	0	0	7,08E-02	0	1,47E-01	0
WDP **	m³	2,63E-02	1,05E-02	3,16E-02	0	0	2,43E-04	0	6,62E-03	0
Acronyms	GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption									

Additional environmental impact indicators

Table 54: Additional environmental impact results for the product LIP 250

	Results per declared unit											
Indicator	Unit	A1-A3	Α4	A5	В	C1	C2	C3	C4	D		
GWP-GHG	kg CO₂ eq.	5,05E-02	4,32E+01	6,80E-02	0	0	4,32E+00	0	5,18E-03	0		
PM	disease inc.	4,71E-09	5,99E-09	4,37E-09	0	0	5,05E-10	0	9,97E-10	0		
IRP*	kBq U235 eq	3,60E-03	5,56E-03	1,03E-02	0	0	3,58E-04	0	6,53E-04	0		
ETP-fw**	CTUe	9,80E-01	7,36E-01	1,02E+00	0	0	5,53E-02	0	9,29E-02	0		
HTP-c**	CTUh	3,01E-11	2,30E-11	3,01E-11	0	0	1,51E-12	0	2,36E-12	0		
HTP-nc**	CTUh	7,41E-10	7,46E-10	7,72E-10	0	0	5,83E-11	0	6,15E-11	0		
SQP**	Dimensionless	4,15E+00	3,72E+00	1,36E+00	0	0	8,09E-02	0	3,09E-01	0		
Acronyms	carbon dioxide of equal to the GW	GWP-GHG: The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.										
	PM = Particulate Matter emissions; IRP = Ionizing radiation, human health; ETP-fw = Eco-toxicity, freshwater; HTP-c = Human toxicity, cancer effects; HTP-nc = Human toxicity, non-cancer effects; SQP = Land use related impacts/Soil quality.											

Use of resources

Table 55: Resource use - LIP 250

Results per declared unit

Indicator	Unit	A1-A3	A4	A5	В	C1	C2	С3	C4	D
PERE	MJ	5,91E-01	5,22E-01	2,45E-01	0	0	9,00E-01	0	1,25E-03	0
PERM	MJ	1,92E-01	0	0	0	0	0	0	0	0
PERT	MJ	7,83E-01	5,22E-01	2,45E-01	0	0	9,00E-01	0	1,25E-03	0
PENRE	MJ	1,90E+00	9,80E-01	2,08E+00	0	0	7,52E+01	0	1,56E-01	0
PENRM	MJ.	0,00E+00	0	0	0	0	0	0	0	0
PENRT	MJ	1,90E+00	9,80E-01	2,08E+00	0	0	7,52E+01	0	1,56E-01	0
SM	kg	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0
FW	m3	1,73E-02	2,46E+00	2,18E-02	0	0	2,45E-01	0	6,63E-03	0
Acronyms	PERE = Use of rematerials; PERN renewable prime renewable primenergy resource SM = Use of secondary fuels	enewable pr M = Use of re eary energy re eary energy re es used as ra condary mat	imary energenewable presources; Presources us w materials	y excluding r imary energy ENRE = Use o sed as raw ma ; PENRT = To Use of renew	eneverses frescontinuity of the second secon	vable ources n-rendals; PE se of i	primary energy e	ergy re v mate ary er of no ble pr	esources use erials; PERT nergy exclud n-renewable imary energ	ed as raw = Total use of ling non- e primary ty re-sources;

At end of use, when the hardened product is demolished, the LIP Floor Screeds are non-hazardous building waste. The waste from packing material is also assumed to be non-hazardous waste.

Table 56: Waste - LIP 250

	Results per declared unit											
Indicator												
Hazardous waste disposed	kg	3,33E-05	3,16E-06	3,36E-05	0	0	1,71E-04	0	2,22E-07	0		
Non-hazardous waste disposed	kg	1,35E-02	6,94E-02	1,54E-02	0	0	6,62E+00	0	1,00E+00	0		
Radioactive waste disposed	kg	1,18E-05	5,55E-06	1,39E-05	0	0	4,79E-04	0	9,64E-07	0		

Output flows

Table 57: Output flows - LIP 250

		R	esults pe	r declared ι	unit					
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D
Components for re-use	kg	0	0	0	0	0	0	0	0	0
Material for recycling	kg	0	0	6,00E-04	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0
Exported energy. electricity	MJ	0	0	0	0	0	0	0	0	0
Exported energy. thermal	MJ	0	0	0	0	0	0	0	0	0

Table 58: Biogenic Carbon - LIP 250

	Unit	Quantity
Biogenic carbon content in product	kg C	<5%
Biogenic carbon content in packaging	kg C	49%
Results per functional or declared unit. Note: 1 kg biogenic carbon is eq	uivalent to 44/1	2 kg CO2.

LIP 255

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding thresholds values, safety margins or risks.

Core environmental impact indicators

Table 59: Core environmental impact results for the product LIP 255

		R	esults per	declared ι	ınit					
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D
GWP- total	kg CO₂ eq.	2,76E-01	4,30E-02	3,37E-01	0	0	4,35E-03	0	5,28E-03	0
GWP-fossil	kg CO₂ eq.	2,42E-01	5,49E-02	2,58E-01	0	0	4,35E-03	0	5,27E-03	0
GWP-biogenic	kg CO₂ eq.	-1,05E-02	-1,20E-02	3,23E-02	0	0	4,62E-06	0	5,72E-06	0
GWP- luluc	kg CO₂ eq.	5,80E-04	6,68E-05	5,90E-04	0	0	1,63E-06	0	4,97E-06	0
ODP	kg CFC 11 eq.	2,22E-08	1,19E-08	2,30E-08	0	0	1,08E-09	0	2,13E-09	0
AP	mol H⁺ eq.	1,67E-03	2,20E-04	1,75E-03	0	0	1,39E-05	0	4,95E-05	0
EP-freshwater	kg PO ₄ 3- eq.	1,14E-04	2,16E-05	1,15E-04	0	0	2,83E-07	0	4,82E-07	0
EP- marine	kg N eq.	2,63E-04	5,76E-05	2,72E-04	0	0	3,10E-06	0	1,72E-05	0
EP-terrestrial	mol N eq.	3,11E-03	5,97E-04	3,13E-03	0	0	3,39E-05	0	1,88E-04	0
POCP	kg NMVOC eq.	7,86E-04	2,11E-04	7,85E-04	0	0	1,33E-05	0	5,48E-05	0
ADP-minerals&metals**	kg Sb eq.	4,66E-06	1,66E-07	4,78E-06	0	0	1,04E-08	0	1,20E-08	0
ADP-fossil**	MJ	2,90E+00	9,21E-01	3,14E+00	0	0	7,08E-02	0	1,47E-01	0
WDP **	m³	1,31E-01	1,05E-02	1,42E-01	0	0	2,43E-04	0	6,62E-03	0
Acronyms	GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic;									
	GWP-luluc = Glo	bal Warmin	g Potential	land use and	land	use c	hange; ODP	= De	pletion pote	ntial of the
	stratospheric oz		-				-			
	Eutrophication	• •		•					•	
					_			•	•	
	Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone;									
	ADP-minerals&i						•			
	depletion for fo		•	•				,		
			s potential;	vv Dr – vvale	ı (us	er) de	privation p	otenti	ai, uepi ivati	on-weignted
	water consump	tion								

Additional environmental impact indicators

Table 60: Additional environmental impact results for the product LIP 255

		R	esults per	declared ι	ınit					
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D
GWP-GHG	kg CO₂ eq.	2,38E-01	4,32E+01	2,65E-01	0	0	4,32E+00	0	5,18E-03	0
PM	disease inc.	1,40E-08	5,99E-09	1,41E-08	0	0	5,05E-10	0	9,97E-10	0
IRP*	kBq U235 eq	1,49E-02	5,56E-03	2,22E-02	0	0	3,58E-04	0	6,53E-04	0
ETP-fw**	CTUe	5,78E+00	7,36E-01	6,06E+00	0	0	5,53E-02	0	9,29E-02	0
HTP-c**	CTUh	2,07E-10	2,30E-11	2,16E-10	0	0	1,51E-12	0	2,36E-12	0
HTP-nc**	CTUh	5,28E-09	7,46E-10	5,54E-09	0	0	5,83E-11	0	6,15E-11	0
SQP**	Dimensionless	Dimensionless 5,08E+00 3,72E+00 2,33E+00 0 0 8,09E-02 0 3,09E-01								0
Acronyms	GWP-GHG: The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.									
	PM = Particulate freshwater; HTF Land use related	-c = Human	toxicity, car	ŭ		,				• •

Use of resources

Table 61: Resource use - LIP 255

Results per declared unit

Indicator	Unit	A1-A3	A4	A5	В	C1	C2	С3	C4	D	
PERE	MJ	6,36E-01	5,22E-01	2,93E-01	0	0	9,00E-01	0	1,25E-03	0	
PERM	MJ	1,92E-01	0	0	0	0	0	0	0	0	
PERT	MJ	MJ 8,28E-01 5,22E-01 2,93E-01 0 0 9,00E-01 0 1,25E-03									
PENRE	MJ	MJ 2,61E+00 9,80E-01 2,83E+00 0 0 7,52E+01 0 1,56E-01 MJ 0,00E+00 0 0 0 0 0 0									
PENRM	MJ										
PENRT	MJ	2,61E+00	9,80E-01	2,83E+00	0	0	7,52E+01	0	1,56E-01	0	
SM	kg	0	0	0	0	0	0	0	0	0	
RSF	MJ	0	0	0	0	0	0	0	0	0	
NRSF	MJ 0 0 0 0 0 0 0 0 0									0	
FW	m3									0	
Acronyms	PERE = Use of re materials; PERM renewable prim renewable prim energy resource SM = Use of sec secondary fuels	1 = Use of re ary energy r ary energy r es used as ra ondary mate	newable presources; Presources us w materials erial; RSF = 1	imary energy ENRE = Use o sed as raw ma ; PENRT = To Use of renewa	reso f no iteria tal u	ources n-rene als; PE se of r	used as ravewable prime ENRM = Use non-renewa	v mate ary er of no ble pr	erials; PERT nergy exclud n-renewable imary energ	= Total use of ling non- e primary y re-sources;	

At end of use, when the hardened product is demolished, the LIP Floor Screeds are non-hazardous building waste. The waste from packing material is also assumed to be non-hazardous waste.

Table 62: Waste - LIP 255

		R	esults per	declared ι	unit					
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D
Hazardous waste disposed	kg	8,87E-06	3,16E-06	7,91E-06	0	0	1,71E-04	0	2,22E-07	0
Non-hazardous waste disposed	kg	4,54E-02	6,94E-02	4,89E-02	0	0	6,62E+00	0	1,00E+00	0
Radioactive waste disposed	kg	1,86E-05	5,55E-06	2,11E-05	0	0	4,79E-04	0	9,64E-07	0

Output flows

Table 63: Output flows - LIP 255

		R	esults pe	r declared ι	unit					
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D
Components for re-use	kg	0	0	0	0	0	0	0	0	0
Material for recycling	kg	0	0	6,00E-04	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0
Exported energy. electricity	MJ	0	0	0	0	0	0	0	0	0
Exported energy. thermal	MJ	0	0	0	0	0	0	0	0	0

Table 64: Biogenic Carbon - LIP 255

	Unit	Quantity
Biogenic carbon content in product	kg C	<5%
Biogenic carbon content in packaging	kg C	49%
Results per functional or declared unit. Note: 1 kg biogenic carbon is eq	uivalent to 44/1	2 kg CO2.

LIP 227

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding thresholds values, safety margins or risks.

Core environmental impact indicators

Table 65: Core environmental impact results for the product LIP 227

		R	esults per	declared ι	ınit					
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D
GWP- total	kg CO₂ eq.	1,95E-01	4,30E-02	2,52E-01	0	0	4,35E-03	0	5,28E-03	0
GWP-fossil	kg CO₂ eq.	1,15E-01	5,49E-02	1,24E-01	0	0	4,35E-03	0	5,27E-03	0
GWP-biogenic	kg CO₂ eq.	1,72E-02	-1,20E-02	6,14E-02	0	0	4,62E-06	0	5,72E-06	0
GWP- luluc	kg CO₂ eq.	4,24E-04	6,68E-05	4,25E-04	0	0	1,63E-06	0	4,97E-06	0
ODP	kg CFC 11 eq.	1,11E-08	1,19E-08	1,14E-08	0	0	1,08E-09	0	2,13E-09	0
AP	mol H⁺ eq.	7,56E-04	2,20E-04	7,88E-04	0	0	1,39E-05	0	4,95E-05	0
EP-freshwater	kg PO ₄ 3- eq.	1,06E-04	2,16E-05	1,06E-04	0	0	2,83E-07	0	4,82E-07	0
EP- marine	kg N eq.	9,98E-05	5,76E-05	1,01E-04	0	0	3,10E-06	0	1,72E-05	0
EP-terrestrial	mol N eq.	1,69E-03	5,97E-04	1,64E-03	0	0	3,39E-05	0	1,88E-04	0
POCP	kg NMVOC eq.	4,76E-04	2,11E-04	4,59E-04	0	0	1,33E-05	0	5,48E-05	0
ADP-minerals&metals**	kg Sb eq.	5,28E-07	1,66E-07	4,43E-07	0	0	1,04E-08	0	1,20E-08	0
ADP-fossil**	MJ	1,72E+00	9,21E-01	1,90E+00	0	0	7,08E-02	0	1,47E-01	0
WDP **	m³	2,15E-02	1,05E-02	2,65E-02	0	0	2,43E-04	0	6,62E-03	0
Acronyms	GWP-fossil = Glo GWP-luluc = Glo stratospheric oz Eutrophication Eutrophication Eutrophication ADP-minerals&r depletion for fo water consump	bbal Warmin bbal Warmin one layer; A potential, fra potential, Ac metals = Abi ssil resource	ng Potential ag Potential AP = Acidifica action of nu action of nu ccumulated otic depletion	fossil fuels; G land use and ation potentia trients reachi trients reachi Exceedance; on potential f	iWP- land al, Ad ng fr ng m POC	bioge use c ccumu reshw narine P = Fo on-fos	nic = Global hange; ODP llated Excee ater end con end compa rmation po ssil resource	Warr = Dep dance mpart rtmer tentia s; ADI	ming Potent pletion pote e; EP-freshw ment; EP-m nt; EP-terres I of tropospl P-fossil = Ab	ial biogenic; ntial of the ater = arine = trial = heric ozone; iotic

Additional environmental impact indicators

Table 66: Additional environmental impact results for the product LIP 227

		R	esults per	declared ι	ınit					
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D
GWP-GHG	kg CO₂ eq.	4,71E-02	4,32E+01	1,51E-01	0	0	4,32E+00	0	5,18E-03	0
PM	disease inc.	4,46E-09	5,99E-09	4,12E-09	0	0	5,05E-10	0	9,97E-10	0
IRP*	kBq U235 eq	3,23E-03	5,56E-03	9,89E-03	0	0	3,58E-04	0	6,53E-04	0
ETP-fw**	CTUe	8,53E-01	7,36E-01	8,85E-01	0	0	5,53E-02	0	9,29E-02	0
HTP-c**	CTUh	2,53E-11	2,30E-11	2,50E-11	0	0	1,51E-12	0	2,36E-12	0
HTP-nc**	CTUh	6,06E-10	7,46E-10	6,31E-10	0	0	5,83E-11	0	6,15E-11	0
SQP**	Dimensionless	Dimensionless 4,11E+00 3,72E+00 1,31E+00 0 0 8,09E-02 0 3,09E-01								0
Acronyms	carbon dioxide (GWP-GHG: The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.								
	PM = Particulate freshwater; HTP Land use related	-c = Human	toxicity, car	ū		•				• •

Use of resources

Table 67: Resource use - LIP 227

Results per declared unit

Indicator	Unit	A1-A3	A4	A5	В	C1	C2	С3	C4	D
PERE	MJ	6,52E-01	5,22E-01	3,27E-01	0	0	9,00E-01	0	1,25E-03	0
PERM	MJ	1,92E-01	0	0	0	0	0	0	0	0
PERT	MJ	8,44E-01	5,22E-01	3,27E-01	0	0	9,00E-01	0	1,25E-03	0
PENRE	MJ	1,54E+00	9,80E-01	3,21E+00	0	0	7,52E+01	0	1,56E-01	0
PENRM	MJ	0,00E+00	0	0	0	0	0	0	0	0
PENRT	MJ	1,54E+00	9,80E-01	3,21E+00	0	0	7,52E+01	0	1,56E-01	0
SM	kg	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0
FW	m3	1,36E-02	2,46E+00	2,29E-02	0	0	2,45E-01	0	6,63E-03	0
Acronyms	PERE = Use of re materials; PERM renewable prim renewable prim energy resource SM = Use of sec	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy re-sources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of not fresh water								

At end of use, when the hardened product is demolished, the LIP Floor Screeds are non-hazardous building waste. The waste from packing material is also assumed to be non-hazardous waste.

Table 68: Waste - LIP 227

Results per declared unit										
Indicator						D				
Hazardous waste disposed	kg	2,65E-05	3,16E-06	2,99E-05	0	0	1,71E-04	0	2,22E-07	0
Non-hazardous waste disposed	kg	1,23E-02	6,94E-02	1,47E-01	0	0	6,62E+00	0	1,00E+00	0
Radioactive waste disposed	kg	1,44E-05	5,55E-06	2,62E-05	0	0	4,79E-04	0	9,64E-07	0

Output flows

Table 69: Output flows - LIP 227

Results per declared unit										
Indicator	Unit	A1-A3	A4	A5	В	C1	C2	C3	C4	D
Components for re-use	kg	0	0	0	0	0	0	0	0	0
Material for recycling	kg	0	0	6,00E-04	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0
Exported energy. electricity	MJ	0	0	0	0	0	0	0	0	0
Exported energy. thermal	MJ	0	0	0	0	0	0	0	0	0

Table 70: Biogenic Carbon - LIP 227

	Unit	Quantity		
Biogenic carbon content in product	kg C	<5%		
Biogenic carbon content in packaging	kg C	49%		
Results per functional or declared unit. Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2.				

Additional information

Fossil free energy:

LIP Bygningsartikler A/S has used fossil free energy since 2014. Today, the energy is delivered from the wind turbine power plant at LINDØ port of Odense from Energy Fyn. The total energy consumption on the site is equivalent to 919 MWh per year.

Information related to Sector EPD

This is an individual EPD.

Differences versus previous versions

xx-10-2022 (version 2): This is the second version of the EPD. The reason for updating the EPD is the addition of one product i.e. LIP 227 Floor Screed that has similarities with the ten products assessed in the first version of the EPD. Instead of using generic data for raw material production and transport, seven main suppliers were contacted and specific EPD for their raw materials were used. In the first declaration, the PCR 2019:14 version 1.11 valid until 2024-12-20 was used and supplemented by sub-PCR Cement and building lime 2012:01. Since then, a complementary c-PCR Cement and building lime 2019:14 to the core PCR 2019:14 was published and referred to. This sub- PCR is under update and therefore not valid. There are significant changes in results because apart from database update, the processes from Ecoinvent database 3.8 were not affected by update of the SimaPro software from 9.1.0.7 in 2021 to SimaPro 9.4 in 2022.

Moreover, more specific verified data from suppliers were obtained and integrated with the processes from the generic LCA software database.

There was a change from one type of grey cement to another for the same supplier in LIP's prescriptions, leading in reductions in potential impacts, especially in Climate change indicator. Regarding amounts in recipes, the same as in first EPD version are used for the ten products already assessed, while a new product LIP 227 was added in 2022.

References

Project Report - LIP Floor Screeds, LIP Bygningsartikler A/S, 2021 (version 1)

Project Report vers004(004) floor screeds 2022 (version 2)

General Programme Instruction of the International EPD® System. Version 3.01.

ISO 14025:2010 Environmental labels and declarations-Type III Environmental Declarations-Principles and procedures

ISO 14040:2006 Environmental management-Life Cycle Assessment-Principles and framework

ISO 14044:2006 Environmental management-Life Cycle Assessment-Requirements and guidelines

PCR 2019:14 Construction products (EN 15804:A2) version 1.11

EN 15804:2012+A2:2019 Sustainability of construction works-Environmental Product Declarations-Core rules for the product category of construction products

EN 12004:2007+A1:2012 for interior and exterior bonding of ceramic tiles, porcelain, natural stone and mosaics on floors and walls.

EN 13813:2003 (Screed material and floor screeds – screed material – properties and requirements).

Programme-related information and verification

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804.

	EPD International AB				
	Box 210 60				
Programme:	SE-100 31 Stockholm				
	Sweden				
	www.environdec.com				
	info@environdec.com				
EPD registration number:	S-P-04247				
Published:	2021-11-02 (version 1)				
Revised:	19-09-2022 (version 2)				
Valid until:	20-08-2026 (version 1, version 2)				
CEN standard EN 15804 serves as the Core Pro	oduct Category Rules (PCR)				
Product category rules (PCR): PCR 2019:14 Cor	nstruction products (EN 15804:A2) Version 1.11				
-	Committee of the International EPD® System. Review chair: Claudia le. The review panel may be contacted via the Secretariat				
Independent third-party verification of the de	claration and data, according to ISO 14025:2006:				
☐ EPD process certification 区 EPD verification					
Third party verifier: Camilla Landén, Bureau Veritas Certification Sverige AB					
Accredited by: SWEDAC with accreditation nu	mber 1236				
Procedure for follow-up of data during EPD va	lidity involves third party verifier:				
□ Yes					

The International EPD® System

^{*}Disclaimer: This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

^{**}Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Contact information

LIP Bygningsartikler A/S

Industrivej 16

EPD owner 5580, Nørre Aaby, Danmark

info@lip.dk www.lip.dk

Bureau Veritas HSE, Danmark

Odyssefs Papagiannidis

Oldenborgsgade 25-31

7000, Fredericia, Danmark

www.bvhse.dk

infohse@dk.bureauveritas.com

Programme operator

LCA author

the International EPD® System

www.environdec.com

Bureau Veritas Certification

Sverige AB 3rd party verifier

Camilla Landén

Fabriksgatan 13,

412 50, Göteborg, Sweden

https://www.bureauveritas.se/

